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Spectral Domain Solution of Arbitrary Coplanar

Transmission Lhte with Multilayer Substrate
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Abstract—A hybrid mode analysis is presented for a multilayer

dielectric within a rectangular conducting box. An arbitrary set of

conductors may be distributed along the lower surface of the top layer,
so that single or coupled forms may be analyzed of slot line, microstrip,
or coplanar waveguide. The analysis combines a transfer-matrix approach

with the spectral domain method to give a versatile and efficient solutioh.
CPU ,thne on an IBM 360/65 is about 1 s per layer of substrate, for a

single slot or strip, at one frequency.
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Fig. 1. Shielded multilayer dielectric with arbitrary coplanar conductors.

INTRODUCTION

With the increased use of suspended substrate lines (such as

slot line and coplanar waveguide), various studies have been

made of multilayer “microstrip-t ype” structures. Generally,

these have been limited to the quasi-T13M approxinnation, with

consequent restriction to dispersion-free operation [1], [2]. In

this short paper, the spectral domain method of Denlinger [3]

and Itoh and Mittra [4] is applied to give a frequency-dependent

hybrid mode analysis of an enclosed multilayer structure.

The method uses a transfer-matrix approach in the spectral

domain and gives advantages of flexibility and efficiency. Due

to this approach, a single computer program can analyze single

or coupled strips and single or coupled slots. Simple program

mo@fications would treat an arbitrary distribution of coplanar

conductors. The conductors are on the top surface of an arbitrary

number of dielectric layers. The aforementioned structure is,

then, with one dielectric region above the coplanar conductors,

enclosed within rectangular conducting walls. In its generality,

it naturally includes the particular structures studied by Itoh

and Mittra [4] with N = 1 and by Knorr and KuchJer [5] with

N = 2, the latter taking no account of an enclosure. The transfer-

matrix approach makes for easy setting up of the equations and

computer program, and gives computing time at worst linear in

N. It also gives directly the fields at any plane of interest below

the coplanar conductors,

A brief account will now be given of the theory, followed by

examples of results for single microstrip and for single and

coupled slots on a suspended substrate,

THEORY

Consider a multilayer structure with distributed conductors

on the top of the Nth layer (Fig. 1). ‘lro obtain the dispersion

characteristics of this type of structure, the “spectral domain”

method is employed [4]. Let the electrical potential function be

&(x,y) and the magnetic potential function be @h(.qy). In this

case, the z components of fields are

Ez=j
k2 –/12,

B
* (x, y)e-~~z

(1)
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The potential functions can be written in the Fourier domain

as

f
lj=(an, y) = ‘a *’(x, y)e-J””X dx

–a

JJ’(%9Y)= ‘a#h(x, y)e-~”~x dx. (2)
-a

From the preceding functions, all fields can be expressed in the

Fourier domain. For the sake of simplicity, transformation of

any field is shown by a tilde ( N ), for example, the transformation

of EX is shown as i?x. Now consider two successive layers, say,

i and i + 1. Potential functions within these two layers and in

the Fourier domain are

where

yin2 = ctnz + /?2 – Ki2.

Boundary conditions at the interfaee of

i + 1th layer are

Z=i = ~=(~+~),

.Hzi = H.(i+l),

~~i = fi~(i+l)j

the ith layer and

E~i= 11~(~+~), at y = hi. (5)

Substituting appropriate fields in the preceding boundary

conditions yields a relatlon between Ai,Bi, Ci,Dt ,Ai + 1,Bt + 1,G + 1,

D ~+1, that is,

[

Ai+l

Bi+l

c i+l
Di+l [1

Ai

= [Yi+,hl-’” [Y,~il” ~ (6)

Di
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[yiht] =

.

The 4 x 4 matrix of (6) can be called a “transfer” or “chain”

matrix as coefficients of the fields of any layer can be expressed

in terms of coefficients of any other one, for instance, coefficients

of fields of the i + 2th layer in terms of the ith layer are

rA,+21

LDi+z]

rA,l

. [n+lhl-l “ [Yihil“

Hence (6) is quite general and like (9) can be extended for ~-layer

structures. Another advantage of(6) is its simplicity and efficiency

in computer program. Computing time would not increase more

than linearly with the number of layers. By contrast, the method

as described by Farrar and Adams [6] would give computing

time proportional to N3 for matrix “inversion.”

The strips on the top layer cause a new boundary condition

which can be straightforwardly satisfied for an individual problem

via the method explained in [3].

This general theory can be applied to the various types of

structures. One of them is shielded slot line with suspended

dielectric (Fig. 2). In this special case, there are only two layers

under the coplanar conductors; at the bottom of the lower one

is a perfect conductor and on the top of the second one is a

single slot. To satisfy the boundary conditions at the bottom,

B1 and Cl must be zero. Hence the transfer matrix for this type

Of structure gives

HAZ

H

Al

B2

q
= [y2h1]-l[y,h, ] : . (lo)

LDI]

o

(7)

(8)

——

It is apparent that the field coefficients in the hatched region

of Fig. 2 can be expressed in terms of Al and D1.

To satisfy boundary conditions at the interface of the second

layer and upper air region, fields in the latter region should lbe
evaluated, These field components are readily obtainable from

J!7zo = j
K02 – j?2

Aoshyon(h2 + d – Y)~.

~o=j Ko2-P2
z Boshyo”(h2 + d – Y)

b
(11)

where

z = anz + /32 – K02.YO.

Therefore, for matching the fields at the interface of the dielectric

and upper air region, the following boundary conditions are

used:

BZ2 = Ezo,

EX2 = -@xo,

BX2 – fixo = j=,

l?z2 – @zo = 3X, aty=h2 (12)

where ~X and ~Z are Fourier transformations of the transverse

and longitudinal currents, rejpectiv~ly. From (12), Al, Dl, ,4.,

and B. are obtained. Hence E= and Ex at the mentioned interface

can be expressed in terms of JX and J=, that is,

(13)
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Fig.2. Dispersion characteristic ofshielded slot onasuspen{ied substrate.

where

~ =jKo2–b2
11 AM1shyond

B

G12 = j
Ko~ - /32

AN1shyond
B

G21 =
(

Iqaoyon A
-j unAM1 + — M2

)

shyond
B

(
G22 = –j unAN1 +

)
** AN2 shyond

P

AM1 = (a”h”do – hof”a” + b“dog” + hol’’b’’detet

AN1 = (a’’bof” - a“ddo – 1“bob” – b“do C“)/det

M, = (l’’h”ao + aof”g” + lol”b” – a“h”CoA

– Cog’’b” – a“~lo)/det

AN2 = (a’’d’C’o + CoC’’b” - l“d”ao – C“f”aO)/det

det = a“Co(hod” – h“bo) + a“lo(d”do – f“b,~)

+ b“Co(C”ho – bog”)

+ b“lo(l”bo + dot”)

+ aoC’’(h”do – hof”) + aog’’(f”bo – clod”)

+ aol’’(h’%o – d“ho)

K02 – ~z~hyonda. =

B

b. =
K02 – ~z

B
chyond

2=an2+/j2--Ko2Yon

Co = – anshyond

do = – ‘=” shyond
a

IO&oyon
lo=—

B
chyo”d

/SO= – anchyond

[
a“ = : (K12 –

B
Pz)chyzn(hz – hl)

+ U“ (Kzz – /72)Shy2n(h2 – hJCh?.,nhl
.?~y~” I

[

b“ = ~ %#

1
— (K12 – K22)shy2n(h2 – hl)chylnhl

/? Ioszyzn

. [(K12 – Kz2)shyzn(hz – h~)shy,nh~ 1

‘llylnK 2 – /32)shyzn(hz – h)s@Al

f12Y2n( 2

+— 1
[

1“ = – an chy2”(h2 – hl)shyl”hl

+ ‘fi shyzn(hz – hl)chylnhl
&2yzn 1

p= 1 [(K12K22 – /32K22 – un2K12)
co&2yzaj?

. shyzn(hz — hl)chyl”hl — K22Y2”2

. ‘an ch~2n(h2 – hl)shylnhl

P2Y2n 1
1

9“ = —
[
(K11K22 – /32K22 – IXn2K12)

coy2#2/?

. sh(yz”(hz — hl))sh(yl”hl) — K22y2n2

. 8A” ch(yz”(hz – hl))ch(ylnhl)
82y’2n 1
[h“=–a“ch(yz”(hz – hl))ch(ylnhl) + ‘an

/J2Y2n

1. sh(yz”(hz – hl))sh(ylnhl) .

Since the fields within the slot region may be more accurately

approximated, it is then appropriate to use the following form

of (13):

[2: 21-1[21=H ’14)
Matrix equation (13) is similar to that written in [4] with dif-

ferent values for elements of the matrix. To find the dispersion

characteristics of a slot transmission line, (14) is solved via

Galerkin’s method.

RESULT5

The results presented here are all for the zero-order solution

[4]. Firstly, results were computed for the single enclosed micro-

strip, as in Itoh and Mittra [4]. Numerical results agreed totally

with the earlier figures, as they should, the basic theories being

identical for this structure.

The only other theory available for dispersion with multilayer

structures is for open structures [5]. To test the new theory,

structures were therefore examined with well-spaced conducting

walls, to allow some comparison with open structures. Dispersion

curves are given in Fig. 2 of two structures, one having identical

geometry to that of Knorr and Kuchler [5] except for the

enclosing wall. Close agreement is seen between the two theories

for D/b = 0.1. The closer agreement with increasing frequency
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on the one substrate surface. One computer program deals with

an arbitrary number of regions under the coplanar conductors,

with simple modifications for different conductors. CPU time

on an IBM 360/65 is about 1 s per region for a single slot or

strip, at one frequency.
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Fig. 3. Distribution of electric field for coupled slots.
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Fig. 4. Even and odd mode dispersion characteristics for coupled slots
(even denoting an even E,, E,, and H.).

is consistent with the decreasing effect of the enclosing conductor.

Computing time is about 2 s for each point, and shows the

high efficiency of the spectral domain method. There is a clear

advantage in the analysis accounting for the enclosing conduct-

ing walls, to model the inevitable packaging in practice,

Dispersion characteristics of another type of structure,

a shielded coupled slot line, was also investigated. The field

distribution within the slots for even and odd modes is shown in

Fig. 3, using the dependence (X2 – W2)- li2 of [5] and [7].

Fig. 4 shows our results; again a comparison with results of Knorr

and Kuchler [5] for open slot lines is given. Computing time for

this case is about 6s per point.

CONCLUSION

In spite of the increasing interest in suspended substrate trans-

mission line, previous theories have ignored either dispersion,

or the presence of the (inevitable) enclosure. The work described

here—an extension of the spectral domain approach—allows for

efficient computation of slot line, coplanar guide, microstrip, or

similar structures (including couplers) with adjacent conductors

Abstract—Modulation electric fields in a class of planar, lumped-

parameter circuit or traveling-wave-type eleetrooptic modulators in
integrated optics are analyzed by applying a simple transformation of
variables to presently available formulas on microwave integrated

circuits (MIC’s). Example calculations are shown.

I. INTRODUCTION

It has already been shown that the microwave theory is useful

in designing a discrete broad-band electrooptic modulator [1].

Electrooptic modulators in inteigated optics are inherently of

the planar structure fabricated by microelectronic technology

[2]- [6]. While modulators with coplanar electrodes of a narrow

gap are expected to have high values of energy efficiency, the

nonuniform modulation electric field distribution in the cross

-section of an optical beam is also apparent.

It is necessary to develop a theory to estimate the electric field

distribution in these structures, but such a theory has not been

reported. Though there is a structural similarity between such

modulators in integrated optics and striplines in microwave

integrated circuits (MIC’S), the electric field theory of the latter

cannot be directly applied to the former since the electrooptic

crystal is anisotropic.

This short paper describes a simple transformation of a co-

ordinate and dielectric ccrnstants which enables us to apply

available formulas and computer programs on MIC’S to a class

of integrated-optics modulator analyses. Numerical examples

based on this method are shown.
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